80 research outputs found

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Efficacy and safety of tigecycline monotherapy vs. imipenem/cilastatin in Chinese patients with complicated intra-abdominal infections: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tigecycline, a first-in-class broad-spectrum glycylcycline antibiotic, has broad-spectrum in vitro activity against bacteria commonly encountered in complicated intra-abdominal infections (cIAIs), including aerobic and facultative Gram-positive and Gram-negative bacteria and anaerobic bacteria. In the current trial, tigecycline was evaluated for safety and efficacy vs. imipenem/cilastatin in hospitalized Chinese patients with cIAIs.</p> <p>Methods</p> <p>In this phase 3, multicenter, open-label study, patients were randomly assigned to receive IV tigecycline or imipenem/cilastatin for ≀2 weeks. The primary efficacy endpoints were clinical response at the test-of-cure visit (12-37 days after therapy) for the microbiologic modified intent-to-treat and microbiologically evaluable populations. Because the study was not powered to demonstrate non-inferiority between tigecycline and imipenem/cilastatin, no formal statistical analysis was performed. Two-sided 95% confidence intervals (CIs) were calculated for the response rates in each treatment group and for differences between treatment groups for descriptive purposes.</p> <p>Results</p> <p>One hundred ninety-nine patients received β‰₯1 dose of study drug and comprised the modified intent-to-treat population. In the microbiologically evaluable population, 86.5% (45 of 52) of tigecycline- and 97.9% (47 of 48) of imipenem/cilastatin-treated patients were cured at the test-of-cure assessment (12-37 days after therapy); in the microbiologic modified intent-to-treat population, cure rates were 81.7% (49 of 60) and 90.9% (50 of 55), respectively. The overall incidence of treatment-emergent adverse events was 80.4% for tigecycline vs. 53.9% after imipenem/cilastatin therapy (<it>P </it>< 0.001), primarily due to gastrointestinal-related events, especially nausea (21.6% vs. 3.9%; <it>P </it>< 0.001) and vomiting (12.4% vs. 2.0%; <it>P </it>= 0.005).</p> <p>Conclusions</p> <p>Clinical cure rates for tigecycline were consistent with those found in global cIAI studies. The overall safety profile was also consistent with that observed in global studies of tigecycline for treatment of cIAI, as well as that observed in analyses of Chinese patients in those studies; no novel trends were observed.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00136201</p

    Modeling Evolutionary Dynamics of Epigenetic Mutations in Hierarchically Organized Tumors

    Get PDF
    The cancer stem cell (CSC) concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation) sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-)hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model

    Fitness Landscape Transformation through a Single Amino Acid Change in the Rho Terminator

    Get PDF
    Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli. We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely discrepant fitness consequences of identical single locus perturbations in rho* versus rhoWT backgrounds. Our observations reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be accessible to a bacterial population

    Effects of interspecific gene flow on the phenotypic variance–covariance matrix in Lake Victoria Cichlids

    Get PDF
    Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may, however, rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance–covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast, we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance–covariance matrix, potentially increasing the adaptive potential of such populations

    Most Networks in Wagner's Model Are Cycling

    Get PDF
    In this paper we study a model of gene networks introduced by Andreas Wagner in the 1990s that has been used extensively to study the evolution of mutational robustness. We investigate a range of model features and parameters and evaluate the extent to which they influence the probability that a random gene network will produce a fixed point steady state expression pattern. There are many different types of models used in the literature, (discrete/continuous, sparse/dense, small/large network) and we attempt to put some order into this diversity, motivated by the fact that many properties are qualitatively the same in all the models. Our main result is that random networks in all models give rise to cyclic behavior more often than fixed points. And although periodic orbits seem to dominate network dynamics, they are usually considered unstable and not allowed to survive in previous evolutionary studies. Defining stability as the probability of fixed points, we show that the stability distribution of these networks is highly robust to changes in its parameters. We also find sparser networks to be more stable, which may help to explain why they seem to be favored by evolution. We have unified several disconnected previous studies of this class of models under the framework of stability, in a way that had not been systematically explored before

    Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone

    Get PDF
    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as β€˜cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria

    Specialization Can Drive the Evolution of Modularity

    Get PDF
    Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations

    Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses

    Get PDF
    Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection
    • …
    corecore